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1 An overview of PAPI

PAPI is a system for providing access control to restricted information resources
across the Internet. It intends to keep authentication as an issue local to the
organization the user belongs to, while leaving the information providers full
control over the resources they offer.

The authentication mechanisms are designed to be as flexible as possible, al-
lowing each organization to use its own authentication schema, keeping user
privacy, while offering target sites enough data to perform authorization and
collect usage statistics. Moreover, access control mechanisms are transparent to
the user and fully compatible with the most commonly employed Web browser
and any operating system.

The system consists of two independent elements: the Authentication Server
(AS) and the Point of Access (PoA). This structure makes the final system
much more flexible and able to be integrated to different environments. There
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is no need of a one-to-one mapping between ASes and PoAs: a given PoA may
manage to deal with requests from any number of ASes and direct them to any
number of web servers.

The purpose of the AS is to provide users with a single authentication point
and enable them to retrieve (in a completely transparent manner) the temporary
keys that will let them access the services they are authorized to. A PAPI2 AS
may also include an Attribute Authority (AA) server associated to it, able to
provide requesting PoAs with those relevant attributes related to the user that
is trying to access a given resource.

The PoA manages authorization and actual access control to a set of web loca-
tions for a given organization. The owner of the target site have the responsi-
bility of managing this point of access. A PAPI PoA can be adapted to any web
server, whatever its implementation is. Moreover, a given web server can have
more than one PoA, and a PoA can control more than one web server. PoAs
can be hierarchically combined into groups controlled by a Group-wide PoA
(a GPoA), a trusted source within the group for assessing user data without
requiring them directly from the ASes.

Figure 1: The PAPI base protocol

1.1 The PAPI protocol in brief

With PAPI, authentication is a local matter, and authorization too. Authenti-
cation occurs at the user’s organization, possibly accessing data that must not
be disclosed in any case. Once authenticated, the user is able to go the entry
points of the PoAs. It is important to remark that the AS is not sending any
user-provided data to any PoA. It prepares an assertion (as required by the
PoA) about the user and signs it using its private key. The only constraint
that a PoA imposes on the assertion about an user sent by an AS is that the
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identifier must be unique at least during the lifetime of the tokens the PoA is
going to provide. Of course, information should be also enough to pass through
the rules the PoA enforces, but the AS is never required to disclose any private
information.

The PoA receives this chunk of information, signed by the AS, and decides
whether to grant access to the user or not. It is important to note that when we
refer to a “PoA trusting an AS”, we are not talking about a PoA permitting any
access request coming from that AS, but about the PoA trusting the assertions
the AS makes. That means that, if a PoA trusts an AS, the (digitally signed)
assertion of "This is user X of group Y" made by the AS is going to be trusted
by the PoA. And the PoA decides, according to the assertion and its policy, to
grant access or not. Authorization is, again, a local matter to the organization
operating the PoA.

In the following sections we will describe the interactions among the different
elements of the system, and the data exchanged by them. The PAPI protocol
has three different phases:

1. Authentication, that takes place at the AS, in which users provide proofs
of their identity and make the AS get ready to produce the appropriate
assertions for them.

2. Authorization, that occurs at the PoA the first time it is contacted within
a session. In this phase, the PoA seeks for assertions about the requesting
user and evaluates them, deciding whether to grant access or not.

3. Access control, carried by the PoA when processing requests once the
initial request has been authorized.

2 PAPI application scenarios

The decoupling of PAPI components and the different interactions that the
protocol offer permits the existence of different scenarios, depending on the flow
of user actions and the exchange of data among the components of the system.
Let’s consider the following components, that define the simplest configuration
containing all the possible interactions:

• An Authentication Server, AS0, located as http://as0.source.domain/AuthServer,
able to validate user credentials and containing a definition of the PoAs
able to accept its assertions.

• A Point of Access, PoA0, providing access to the Web location http://poa0.target0.domain/

• A Group-wide Point of Access, GPoA0, located at http://gpoa0.target1.domain/
and not providing access control to any Web resource.

• A couple of Point of Access, PoA1 and PoA2, providing access to the Web
locations http://poa1.target1.domain/ and http://poa2.target2.domain/,
and subordinated to GPoA0. Note that, while PoA1 is in the same domain
as GPoA0, that is not the case for PoA2.
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Since GPoA0 acts as trust aggregator for PoA1 and PoA2, there is no need for
AS0 to know about them. As far as the Authentication Server is concerned,
its trust links are maintained with GPoA0, and as many subordinated PoAs as
required may be defined under GPoA0 without affecting the other components.

Four different scenarios can be considered:

1. The user first authenticates at AS0, which answers with a page containing
links to the available PoAs known to it.

2. After authentication at AS0, the user tries to access a PoA under GPoA0.

3. Without prior authentication, the user tries to access either PoA0 or a
PoA under GPoA0.

4. Once it has accessed the resource intended in 3, the user goes to some
other resource.

2.1 The access control phase

These four scenarios differ in their authentication and authorization phases.
Access control is always performed by means of a pair of cookies, named Hcook
and Lcook, that are passed to the user’s browser when authorization succeeds.
These cookies are free-format strings containing the following data:

Hcook isTemporary:userData:expiryTime:randomBlock:location:serviceID

Lcook timeStamp:location:serviceID:userData

Where:

isTemporary Is a boolean value that defines if the Hcook is temporary or persis-
tent. Temporary Hcooks are used in PoAs that depend of a GPoA.

userData Contains the information about the user kept by the PoA after au-
thorization, derived from the assertion received by the PoA. May be
passed (for those URIs matching the regular expression defined by
the PAPI configuration directive Hcook_Handler) to other elements
processing the request by means of either an Apache note called
PAPIHcook, or a HTTP request parameter called X-PAPIHcook.

expiryTime Sets the moment in which this Hcook will no longer be valid, ex-
pressed in seconds since the epoch (1 January 1970).

randomBlock Is used to check the value of Hcook with the cookie register, in
order to avoid unauthorized access by cookie copying (see below).

location Is the Apache location the PoA is defined for.

serviceID Is an identifier to select the PoA among others defined for the
Apache server it is running on.
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timeStamp Is the moment in which this value of Lcook was generated

These values are encoded using the AES symmetric-key algorithm. The keys
employed are stored as strings of up to 32 hexadecimal digits inside the files
defined by the PAPI configuration directives HKEY_File and LKEY_File, re-
spectively. Hcook is sent to the browser so as to make it permanent (storing
its value in disk) by means of a expires parameter in the Set-Cookie HTTP
header , while Lcook does not use this parameter and is therefore kept by the
browser just in memory. Thus Lcook is intended to be used as a session cookie,
while Hcook is used to keep the authorization state between sessions.

Whenever a request arrives for a resource under a PAPI-protected location, the
PoA checks for these cookies. If they are not found, an unauthorized access
error is raised. If the cookies are found, the PoA first decodes and analyzes
Lcook to check:

1. Whether it has not expired, according to the PAPI configuration directive
Lcook_Timeout.

2. If there are no immediate filters applicable to the user data, as defined by
the PAPI configuration directive Cookie_Reject.

3. If the rest of elements (location and serviceID) are correct.

If everything is correct, access is granted. If there is a failure in steps 2 or 3, a
fatal access error is raised. In the case that Lcook has expired, the PoA decodes
and analyzes Hcook, verifying that:

1. It has not expired, using the value of its expiryTime element.

2. There are no immediate filters applicable to the user data, as defined by
the PAPI configuration directive Cookie_Reject.

3. The rest of elements (location and serviceID) are correct.

4. The randomBlock corresponds to the one stored in the cookie registry for
this location, user data and service identifier.

If the first test fails, an unauthorized access error is raised. If any of the other
tests fails, a fatal access error is raised. If the tests pass, access is granted,
and a fresh set of cookies are sent back along with the response to the user’s
browser. The cookie registry is updated accordingly, using the new random
block generated for the new Hcook.

When the PoA detects a fatal access error, the Apache server is directed to
simply deny the access using a 403 HTTP response code. If an unauthorized
access error is signaled, the behavior of the PoA depends on its configuration. If
a GPoA is defined by means of the GPoA_URL configuration directive, the request
is sent upwards within the GPoA hierarchy in order to ask the parent GPoA for
authorization. If no GPoA is defined, the Apache server will deny access using
a 403 HTTP response code.

5



2.2 Scenario 1: Authentication enabling direct access

When the user first accesses AS0 at http://as0.source.domain/AuthServer,
it receives a login page to provide their authentication data (username/password
pair, a certificate,...). These data are sent to AS0 by the user (activating the
submit of a form in the page, selecting a certificate in the browser,...), which
validates them according to its configuration. If authentication data is not
accepted, a reject page is sent back to the user.

Once authentication data has been accepted, AS0 looks for the sites the user has
rights to access and that have to be contacted upon successful authentication.
Assume it founds that they are PoA0 and GPoA0. AS0 prepares an accept page
to be sent back to the user. Along with this page, AS0 sends to the browser
an authentication cookie, named PAPIAuthNHcook and encrypted using the AS
key, that will be used for automatic re-authentication if necessary (see section
2.5). Inside this HTML page, AS0 inserts references (through URLs in HTML
tags such as <img>, <script>, <style>, etc.) to PoA0 and GPoA0. Inside
these references, the assertions about the user to be sent to PoA0 and GPoA0
are encoded and signed with the AS0 private key. These URLs looks like this:

http://poa0.target0.domain/AuthLocation?AS=AS0&ACTION=LOGIN&DATA=absc5...

http://gpoa0.target1.domain/AuthLocation?AS=AS0&ACTION=LOGIN&DATA=wqrt...

Note that the DATA parameter is different, since the assertion sent to each PoA
may be different, according to the AS configuration.

The general format of the DATA parameter is:

userAssertion:expiryTime:currentTime:location:serviceID

When the user’s browser receives this page, it tries to fulfill the data to be
presented to the user by contacting PoA0 and GPoA0 according to the URLs
inside the above mentioned HTML tags. When PoA0 and GPoA0 receive the
request, they evaluate the request to:

1. Check whether an AS named AS0 is recognized by them, that is, it is
defined by a PAPI_AS directive and there is a file named AS0_pubkey.pem
in the directory defined by Pubkeys_Path.

2. Verify if the data sent by AS0 is correctly signed, by decrypting it with
the key found in the previous step and checking its format.

3. Verify that the assertion about the user has not expired (currentTime
is inside the limits defined by the parameter URL_Timeout), and that
location and serviceID are correct.

4. Check if the user assertion matches one of the filters defined by means of
PAPI_Filter and whether if translates into an accept or a reject result.

5. If an external authorization engine has been defined by means of SPOCP_Server,
prepare a query to the authorization server using the assertion about the
user and send it to the server.

6



In the case one of them finds the request unacceptable, it sends back to the
user’s browser a particular object (image, JavaScript snippet, CSS stylesheet,...)
according to the value of the RURL parameter of the request (or a default object
configured in the PoA by means of Reject_File) .

If the contacted PoA finds acceptable the request, it sends back to the user’s
browser the object defined by the value of the AURL parameter of the request
(or a default object configured in the PoA by means of Accept_File). Along
with this object, the PoA sends the first copy of the access cookies to the
browser, coded according to the received assertion and the rewrite rules defined
by any User_Data_Rewrite and/or Hcook_Generator directives, and valid for
the shorter of the time periods defined by expiryTime in the request URL or
the Max_TTL directive.

The accept page usually contains links to the contacted sites (highlighted or
produced by means of the objects requested to the PoAs), constituting sort of
a portal to those resources. In this scenario, the accept page should contain a
link to PoA0. When the user clicks on this link, since access cookies are already
loaded when the requested was accepted, access is granted.

2.3 Scenario 2: Authorization through a GPoA

Let’s consider the case when, once the steps described above have been success-
fully performed, the user direct the browser to PoA1. The behavior for PoA2
is exactly the same, since the PAPI access cookies are bound to the server and
location the PoA is configured to, not to a entire domain. The access control
handler at PoA1 finds that no access cookies are available, and it directs the
browser to GPoA0 (according to the value of its GPoA_URL directive) using a
URL of the form:

http://gpoa0.target1.domain/AuthLocation?ACTION=CHECK&DATA=KEY&URL=PoA1URL

Where KEY is an internal reference to the request data, stored in an internal
database.

When GPoA0 receives this request, it verifies that it comes with the appropri-
ate access cookies, so it prepares a response to PoA1 in the form of another
redirection to the following URL:

PoA1URL?ACTION=CHECKED&DATA=a1b2c3d4...

Where PoA1URL is the value of the URL parameter in the first redirection, and
the DATA field is somehow similar to the parameter that an AS send to a PoA,
although it depends on whether the access cookies for GPoA0 were correctly
received or were invalid (expired, corrupted, etc). In the case of invalid cookies
it has the following format:

ERROR:0:0:KEY

In the case the cookies are valid, the format is as follows:

userAssertion:expiryTime:currentTime:KEY

Where KEY is the value of the KEY parameter in the first redirection (it is used as
key in the data base where the original HTTP request has been stored, it will al-
low to continue with it in a transparent way for the user), and userAssertion is
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derived from the contents of GPoA0 access cookies, once the applicable rewrites
defined by any GPoA_Rewrite (if any) are done.

Figure 2: Interactions between a PoA and its parent GPoA

These data is signed using the private key of GPoA0, held in the file defined by
its configuration directive GPoA_Priv_Key.

Upon receiving the redirected request back, PoA1 will:

1. Check whether a file named _GPoA_pubkey.pem exists in the directory
defined by Pubkeys_Path.

2. Verify if the data sent by GPoA0 is correctly signed, by decrypting it with
the key found in the previous step and checking its format.

3. Verify that the string ERROR has not been received in the place of the
assertion about the user (that is, the access cookies for the GPoA were
valid).

4. Verify that the assertion about the user has not expired (currentTime is
inside the limits defined by the parameter URL_Timeout), and that the
value of the request reference in KEY is in the internal database.

5. Check if the user assertion matches one of the filters defined by means of
PAPI_Filter and whether if translates into an accept or a reject result.

6. If an external authorization engine has been defined by means of SPOCP_Server,
prepare a query to the authorization server using the assertion about the
user and send it to the server.

If any of these tests fails, PoA1 will reject the original user’s request as if the
access control phase has failed.
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If all the tests pass, PoA1 will progress the original request (retrieving its pa-
rameters from the internal database) and send the corresponding answer along
with the first copy of the access cookies to the browser, coded according to
the received assertion and the rewrite rules defined by any User_Data_Rewrite
and/or Hcook_Generator directives, and valid for the shorter of the time periods
defined by expiryTime in the URL from GPoA0 or the Max_TTL directive.

2.4 Scenario 3: Attribute query from a PoA. Authentica-
tion required

Now assume that a new user tries to access directly PoA0. The mechanisms
described here will be the same for PoA1 and PoA2: only an intermediate step
at GPoA0 would take place, using the procedures described in the preceding
section. We will concentrate in this scenario to PoA0, since the case for PoA1
and PoA2 (or at any depth in a GPoA hierarchy) is a combination of the mech-
anisms described here and those described in section 2.3, as we will see in the
next section.

Since no valid cookies are received from the user’s browser, PoA0 looks for
a GPoA using its GPoA_URL parameter. PoA0 does not belong to any GPoA
hierarchy, but it can use a special GPoA_URL format, that uses the wayf: method
identifier to indicate that PoA0 must contact a a PAPI AS, and that the URL
following the string wayf: is going to help PoA0 in finding the appropriate AS
to be queried about this user. A reference of this form:

wayf:built-in

Will make the PoA software to manage by itself an internal request showing
the user a list of known ASes, so one of them may be selected. In general, a
reference of the form:

wayf:http://some.server.some.domain/wayfURL

Will make the PoA redirect the request to the URL identified there.

In this case, the request includes the following parameters:

PAPIPOAREF The reference assigned by the PoA to the request (see previous
section)

PAPIPOAURL The URL to redirect the response from the selected AS (see pre-
vious section)

PAPIHLI An optional identifier intended to direct the wayf: handler to an
AS (or set of ASes) the PoA finds appropriate to satisfy the request.

The wayf: handler must interact with users in any way it considers necessary
to establish which is the appropriate AS to forward the authentication request
to. Once it has determined the AS, it must prepare an authentication request
to be sent to it. This request is very much like a request going from a PoA to
its parent GPoA:

ASURL?ATTREQ=POA0ServiceID&PAPIPOAREF=value&PAPIPOAURL=value
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To process this request, AS0 shows the user its login page, and follows its normal
authentication procedures. If the authentication fails, the reject page is sent to
the user. If the authentication succeeds the authentication cookie is set (see
next section), but no accept page is sent to the user, rather a redirect to the
URL included in PAPIPOAURL is performed, with the following format:

PAPIPOAURL?AS=AS0?ACTION=CHECKED&DATA=1a2b3c...

Where the DATA field is similar to the parameter sent by a parent GPoA. If the
AS could not build a correct assertion for the user the format is:

ERROR:0:0:PAPIPOAREF

In the case a valid assertion could be constructed, the format is as follows:

userAssertion:expiryTime:currentTime:PAPIPOAREF

These data is signed using the private key of the AS. It is important to note
that no other PoA defined for this AS is contacted.

Upon receiving the redirected request back, PoA1 will:

1. Check whether an AS named AS0 is recognized by them, that is, it is
defined by a PAPI_AS directive and there is a file named AS0_pubkey.pem
in the directory defined by Pubkeys_Path.

2. Verify if the data sent by AS0 is correctly signed, by decrypting it with
the key found in the previous step and checking its format.

3. Verify that the string ERROR has not been received in the place of the
assertion about the user (that is, AS0 could build a valid assertion).

4. Verify that the assertion about the user has not expired (currentTime is
inside the limits defined by the parameter URL_Timeout), and that the
value of the request reference in PAPIPOAREF is in the internal database.

5. Check if the user assertion matches one of the filters defined by means of
PAPI_Filter and whether if translates into an accept or a reject result.

6. If an external authorization engine has been defined by means of SPOCP_Server,
prepare a query to the authorization server using the assertion about the
user and send it to the server.

If any of these tests fails, PoA0 will reject the original user’s request as if the
access control phase has failed.

If all the tests pass, PoA0 will progress the original request (retrieving its pa-
rameters from the internal database) and send the corresponding answer along
with the first copy of the access cookies to the browser, coded according to
the received assertion and the rewrite rules defined by any User_Data_Rewrite
and/or Hcook_Generator directives, and valid for the shorter of the time periods
defined by expiryTime in the URL from AS0 or the Max_TTL directive.
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Figure 3: Attribute-based authorization using PAPI

2.5 Scenario 4: Attribute query from a PoA. Automatic
reauthentication

If the user that has authenticated at AS0 as a result of requesting access to PoA0
as described in the preceding section tries now to access, say, PoA2, the point
of access will detect that there are no access cookies in the request and redirect
it to GPoA0, according to the procedures described in section 2.3. When this
request arrives to GPoA0, it will detect also that there are no access cookies in
it and will initiate a wayf: redirection according to the mechanisms described
in 2.4.

When the request for authentication arrives at AS0, the authentication server
will detect the presence of the authentication cookie (set whenever a valid au-
thentication has been performed, as described in 2.2 and 2.4). AS0 will try to
decode it using its key and check that:

1. The format of the cookie is correct, and contains the attributes described
in the AS configuration
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2. It has not expired.

3. It comes from the same IP address that it was issued to.

If any of these test fails, AS0 will behave as if the cookie were not set, sending
the login page to the user.

If all the test pass, AS0 will issue a response to GPoA0 following the steps
described in section 2.4 above. Once GPoA0 receives the response from AS0, it
will prepare a response for AS1 following the mechanisms described in section
2.3.

2.6 How assertions are built by the AS

A PAPI authentication server is able to decide which assertion is going to send
about which user for a certain PoA in a completely individual basis, thus pro-
viding fine-grained control over privacy for the users. Of course, it can also use
system-, group-, or site-wide defaults, so AS administrators can comfortably
control these settings for their systems.

Since a PAPI AS is highly modular, the way in which assertions are generated
depends on the particular hooks that are used. When no other assertion for-
mat is provided, the AS uses by default the value of the configuration variable
Assertion. The value of this variable is a string, inside of which the constructs
<papi var="VarName"/> are substituted by the value of the variable identified
by VarName inside the AS. If not set (and no other format has been obtained
for a PoA), the assertion sent is equivalent to:

<papi var="PAPIuid"/>-<papi var="PAPIgid"/>

In the current implementation, only LDAP-based authentication supports the
use of individualized assertions. This is done by means of the attribute papiAssertion
in the LDAP class papiSite (describing a PoA at a certain AS) and the at-
tribute papiQualifiedAssertion in the LDAP classes papiUser (describing a
user of the AS) or papiGroup (describing a group of sites with common prop-
erties for the AS). To decide which assertion is going to be sent to a given site,
the LDAP assertion generation functions apply the following procedure:

1. Use the format defined by the attribute papiQualifiedAssertion match-
ing the site identifier defined in the papiUser entry.

2. If (1) is not applicable, use the format defined by the attribute papiQualifiedAssertion
that matches the site identifier in any of the applicable papiGroup objects.

3. If (2) is not applicable, use the format defined by the attribute papiAssertion
of the papiSite object for the corresponding site.

4. If (3) is not applicable, the value defined in the AS configuration is used
(see above).
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