

Attribute-based Interactions in a Distributed AAI: The PAPI Experience

Diego R. López Rodrigo Castro-Rojo RedIRIS

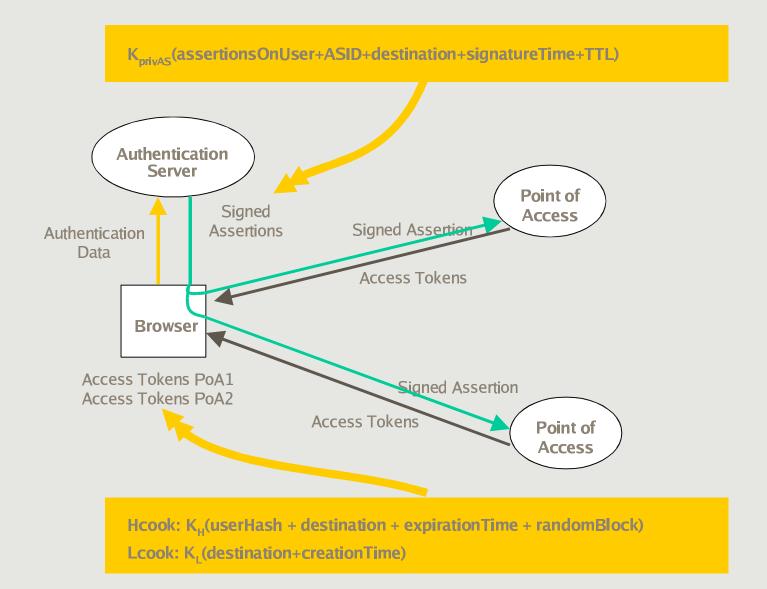
Trustbus03 – Prague, September 2003

Outline

- What is PAPI
 - Components and protocols
- Current usage scenarios
 - How user requirements drive system evolution
- Enhancing user experience
 - Authentication interface
 - Seamless access
- Extending the trust fabric
 - Authorization mechanisms
 - Access token rotation
- Current status

What is PAPI

- PAPI is a distributed access control system for Internet information resources
 - Usable for intra- an inter-realm scenarios
 - Based on the federated administration and active privacy principles
 - Based on standard HTTP procedures and public key cryptography
- Is the only system able to support federated authN/authZ currently in production
 - Pursuing interoperability with other similar intiatives


The components of PAPI

- The Authentication Server (AS)
 - Provides users with a (local) single authentication point
- The Point of Access (PoA)
 - Performs actual access control by means of temporary cryptographic tokens, encoded as HTTP cookies
- The Group-wide Point of Access (GPoA)
 - Combines a group of PoAs with similar access policies
 - Intended to simplify AS-PoA interactions and PoA operation

The PAPI base protocol

Current usage scenarios

- Single sign-on for corporate applications
 - One-step authentication for any Internet-available resource (internal or external)
- Single sign-on for remote services
 - Most popular use in university libraries and consortia
 - Has required the development of proxy elements
- Inter-realm access
 - Keep user identity data inside the user's realm
 - Simplify management of collaborative systems
 - Initial step for digital identity services

The evolution of PAPI

- Users value single sign-on above other features
 - Simpler and clearer user interfaces
 - Deep linking
 - **Extension to other services**
- Organizations require finer control once they realize the potential of attribute-based access control
 - Generalized intranet access
 - Cost reduction in subscription services
 - Better usage statistics
 - New ways to establish usage/access agreements
 - Personalization

The authentication interface – 1

- The PAPI AS is a general framework able to code assertions and send them to PoAs
 - It offers an open interface for modules that:
 - Establish user identity
 - Retrieve user attributes
 - There are modules supporting LDAP, SQL and adhoc databases, IMAP, POP3, X.509 and Kerberos
 - Specific modules have also been developed
- Different assertions can be sent to each PoA
 - Assertion templates are used to define the values and attributes sent
 - In the assertion template to be used for a given PoA can be specified up to the indivisual user level

The authentication interface – 2

- Assertions are sent as part of an URL requesting an specific HTML object inside an HTML page
 - The PoA sends a different object depending on whether the request is authorized or not
 - Any HTML element with an *src* attribute
 - □ Images, frames, scripts, CSS stylesheets,...
- There are practical limits in URL size
 - Ad-hoc syntaxes, agreed between AS and PoAs
 - URNs can be used to formalize them
 - Assertion content is a reference to attributes
 - □ Direct: SAML queries from PoA to AS
 - □ Indirect: LDAP reference to attribute certificate

Seamless access – Deep linking

- A common term in the digital library jargon
 - Implies the ability of following any URL to an information retrieval system
 - From a user perspective, one of the major drawbacks of AA systems in comparison to simple IP-based access control
- A PAPI PoA incorporates
 - Elements to keep state among redirections caused by AA interactions
 - □ Including a POST method handler
 - Interfaces to seamless authorize users:
 - □ The GPoA interface inside the local trust realm
 - ☐ The WAYF interface to select and query ASes

Seamless access – Other services

- Web-based services can be easily integrated within PAPI in a authorization stack
 - The PAPI access module sets authentication data once access tokens are read
 - Other modules can use their own procedures
 - WebCT and VRVS are examples of this
- A very common user request is one-step authentication for any service
 - Experiments in access to external services by means of browser helper applications based on Kerberos
 - Upon authorization, the PoA generates a Kerberos ticket and includes it in the access tokens

Authorization mechanisms – 1

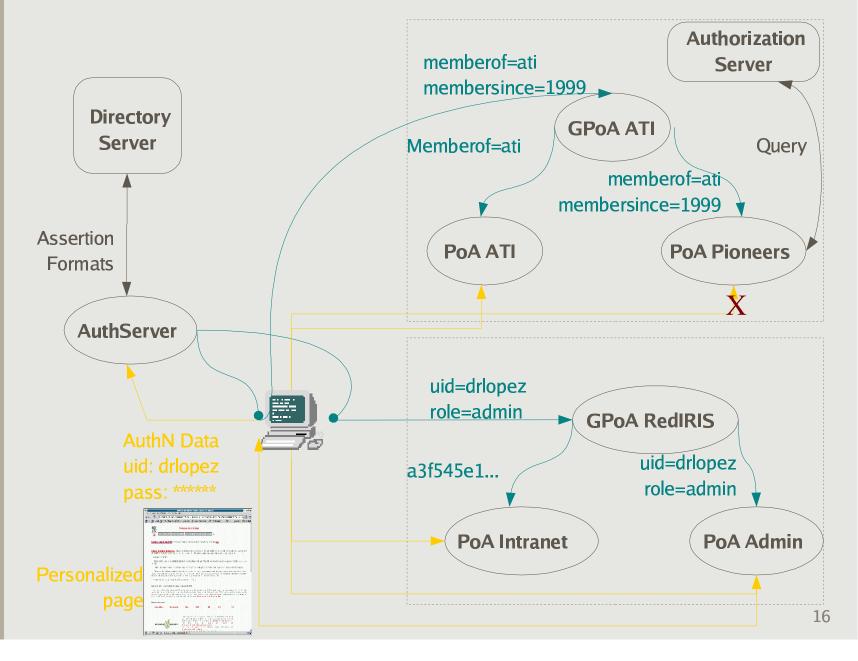
- A PoA can receive an assertion from:
 - An AS contacting as result of user authentication
 - A parent GPoA in response to a attribute query
 - An AS in response to a attribute query
- PoAs can make their authorization decisions according to:
 - Local *filters*
 - Regular expressions applied to attribute strings contained in assertions
 - Formalizable to some extent by means of URNs
 - A query to an external authorization engine
 - □ Transform assertion data into a format accepted by the engine

Authorization mechanisms – 2

- External authorization engines allow:
 - Richer semantics in authorization decisions
 - □ Finer control
 - The application of policies
 - Simplify and rationalize administration
 - Better formalization of the process
 - ☐ Set the ground for a full PMI
- Current implementation
 - Based on the native SPOCP protocol
 - A SAML interface is under development
 - Openess
 - Extensibility

Access Tokens

- PAPI access tokens are implemented as HTTP cookies
 - Encrypted with the PoA symmetric key
- Structure
 - User data
 - Derived from received assertion(s)
 - From a Kerberos ticket to a simple nonce
 - Nonce
 - Stored in a database at the PoA
 - I Time to live of the set of cookies
 - Time to live of the authorization
 - Optionally, client IP address


Access Token Rotation

- Cookie based tokens are subject to copy or interception attacks
 - IP address inclusion only mitigates this problem□ And breaks full mobility
- PAPI PoAs incorporate a token rotation mechanism
 - Token nonces are periodically refreshed
 - Only the token containing the active nonce is valid
- The rotation procedures can be tuned
 - Permit or not persistent authorization
 - Avoid false positives caused by user behavior

Attribute-based authorization

Current status

- Version 1.3 in production
 - Available in open source from http://www.rediris.es/app/papi/
 - Several thousands of users
- PAPI2 is under development
 - Redesign of components and protocols
 - Based on Web Services
 - Incorporate PKI usage
- Interoperability with other systems
 - First experiments with Athens DA
 - Coding a Shibboleth origin
 - Planned integration with OGSA

