
PAPI and LDAP
Using directories for local
authentication and authorization

Diego R. López
diego.lopez@rediris.es



The PAPI architecture
An overview



PAPI phases
And when LDAP is used

Authentication (at the AS)
User is identified
Assertions to be sent to the different PoAs are
generated

Authorization (at the PoA)
Assertions coming from the AS are validated

Temporary tokens (cookies) are generated and
stored

Temporary tokens are received
Fresh tokens are generated and stored if needed

LDAP is currently employed for user
identification and assertion generation

Ongoing work for refining assertion generation
and their validation at the PoAs



User identification

Users are identified by means of a bind
operation

The DN is derived from the "username" the user
provides in the authentication form
The same DN is used for building the assertions
Only simple authentication is supported

Data are transferred to the AS using SSL

Next version will include identification
procedures based on X.509 certificates

The DN in the certificate will be the one used for
building the assertions



Assertion generation
The papi* classes

The assertion procedures build them using
the DN derived from user input

Using the attributes of the papiUser class
The groups the user belongs to

A list of identifiers in the papiGroupId attribute
The sites the user has explicit access to

A list of identifiers in the papiSiteId attribute
papiGroup objects also contain a list of sites in their
papiSiteId attributes

The final outcome of this process is a list of
papiSite objects

Obtained as the union of explicit and implicit site
references



Assertion generation
The papiSite class

Contains the definition of a PAPI PoA
The URL of the PoA
The location for assertion validation at the PoA
The time to live to be requested for the tokens
The service identfier used by the PoA
A description of the service to be accessed

The assertion procedures build the URLs for
requesting access through each of these
PoAs using:

The data read from the papiSite class
The data derived from the user LDAP entry to
identify her/him at the PoA

As returned by the user identification function



Assertion generation
Controlling IDs sent to the PoA(s)

The current implementation sends the same
ID to any PoA it contacts

Too coarse
Little user control on privacy preservation

A new attribute in the papi* classes will
allow for defining the contents of the ID

Define a specific format for a papiUser
Define a common format for a papiGroup
Define a default format for a papiSite
Include free text and references to attributes in
the papi* class

Currently defining the (XML-based) format
and precedence rules



PoA configuration
Reducing complexity

Experience shows that the number of PAPI
PoAs at any installation tends to be high

This is why GPoAs are defined in PAPI 1.1
Configuring a PoA requires a set of values
to be included into the Apache configuration

Many configuration values are common among
PoAs

In the same or another server

Updating them requires:
Priviliged access to all servers
Repetitive (and thus error-prone) procedures

An obvious solution for this is to have
LDAP-based PoA configurations



PoA configuration
What to put in the directory

Almost everything in a PAPI PoA
configuration can be stored (and shared)
using LDAP

AS pubkeys (=> certificates)
Time-outs
Locations in URLs
GPoA definitions
Filters
Proxy-mode configuration

The only possible exceptions are file
locations

Including private keys and databases
Although they could be used as "standard" values



Assertion evaluation

Assertions from the AS are statically
evaluated at the PoA

Based on filter specifications
Changes in user rights are not propagated until
re-authentication occurs

A PoA could dynamically evaluate the
assertion using the ID inside it

As a handle to an attribute server that enforces
privacy preservation policies (a la Shibboleth)
As an anonymized reference to a directory entry

Privacy policies can be enforced by directory ACLs

A remote call to the Policy Engine API


