PAPI and LDAP

Using directories for local
authentication and authorization

Diego R. Lopez

di ego. | opez@ediris. es




The PAPI architecture
ZIRIS K&l overview

Authentication
Server

Authenitcation
data

Termporary
signed UHLs
HTTF

request+ ternporary keys

Temporary
Kay DB

Web
pageh new ternporary keys)

Access




PAPI phases
2IRIS And when LDAP iIs used

*Authentication (at the AS)
*User is identified
* Assertions to be sent to the different PoAs are
generated
*Authorization (at the PoA)

*Assertions coming from the AS are validated

s Temporary tokens (cookies) are generated and
stored

*Temporary tokens are received
oFresh tokens are generated and stored if needed
“LDAP is currently employed for user
Identification and assertion generation

=Ongoing work for refining assertion generation
and their validation at the PoAs



User identification

gIRIS

"Users are identified by means of a bind
operation
The DN is derived from the "username" the user
provides in the authentication form
*The same DN is used for building the assertions
*Only simple authentication is supported
oData are transferred to the AS using SSL
*Next version will include identification
procedures based on X.509 certificates

*The DN in the certificate will be the one used for
building the assertions




Assertion generation
E{[:{hgll The papi * classes

"The assertion procedures build them using
the DN derived from user input

*Using the attributes of the papi User class
o The groups the user belongs to
A list of identifiers in the papi G oupl d attribute
o The sites the user has explicit access to
- A list of identifiers in the papi Si t el d attribute
opapi G oup objects also contain a list of sites in their
papi St el d attributes

*The final outcome of this process is a list of
papi Si t e objects
oObtained as the union of explicit and implicit site
references



Assertion generation
ZIRIS The papi Sit e class

*Contains the definition of a PAPI PoA
*The URL of the PoA
*The location for assertion validation at the PoA
*The time to live to be requested for the tokens
*The service identfier used by the PoA
* A description of the service to be accessed

"The assertion procedures build the URLs for
requesting access through each of these
PoAs using:

*The data read from the papi Si t e class

*The data derived from the user LDAP entry to
iIdentify her/him at the PoA
o As returned by the user identification function



Assertion generation
|k Controlling IDs sent to the POA(s)

"The current implementation sends the same
ID to any PoOA it contacts
“Too coarse
* Little user control on privacy preservation
A new attribute in the papi * classes will
allow for defining the contents of the ID
*Define a specific format for a papi User
*Define a common format for a papi Gr oup
“Define a default format for a papi Si t e
*Include free text and references to attributes in
the papi * class
“Currently defining the (XML-based) format
and precedence rules



PoA configuration
|2k Reducing complexity

"Experience shows that the number of PAPI
PoAs at any installation tends to be high
*This is why GPoAs are defined in PAPI 1.1

*Configuring a PoA requires a set of values
to be included into the Apache configuration
*Many configuration values are common among

POAS
o|n the same or another server

*Updating them requires:
o Priviliged access to all servers
o Repetitive (and thus error-prone) procedures
*An obvious solution for this is to have
LDAP-based PoA configurations



PoA configuration
|0 What to put in the directory

*Almost everything in a PAPI PoA
configuration can be stored (and shared)
using LDAP
*AS pubkeys (=> certificates)

*Time-outs

“Locations in URLs
*GPOA definitions

*Filters

*Proxy-mode configuration

*The only possible exceptions are file
locations
*Including private keys and databases
*Although they could be used as "standard" values



Assertion evaluation

gIRIS

*Assertions from the AS are statically
evaluated at the PoA
*Based on filter specifications
*Changes in user rights are not propagated until
re-authentication occurs
A PoA could dynamically evaluate the
assertion using the ID inside it
*As a handle to an attribute server that enforces
privacy preservation policies (a la Shibboleth)
*As an anonymized reference to a directory entry
oPrivacy policies can be enforced by directory ACLs

*A remote call to the Policy Engine API




